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Graph homomorphism

Given a countable first-language L, let ModL be the Polish space of
countable L-structures.

We will mostly be interested in the space G of countable undirected graphs,
which is a Polish subspace of ModLg with Lg consisting of a single binary
relation symbol. For notational simplicity, given an undirected graph G ∈ G

we denote by G again its edge relation.

We consider the binary relations 4 (homomorphism), v (embeddability)
and ∼= (isomorphism) on G, where h : G1 → G2 is

a homomorphism if v G1 w ⇒ h(v) G2 h(w)

an embedding if it is injective and v G1 w ⇐⇒ h(v) G2 h(w)

an isomorphism if it is a surjective embedding.

Main goal
Determine the complexity of the classification problem on G up to
homomorphic equivalence ≈, where G1 ≈ G2 iff G1 4 G2 4 G1.
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Borel reducibility

4 and v are analytic quasi-orders, while ∼= and ≈ are analytic equivalence
relations, hence we can use Borel reducibility to study them.

Definition
Given analytic binary relations R and S on standard Borel spaces X and Y ,
respectively, we set R ≤B S iff there is a Borel map f : X → Y such that
for all x1, x2 ∈ X

x1 R x2 ⇐⇒ f(x1) S f(x2).

Intended meaning: S is at least as complex as R.

We write R ∼B S if R ≤B S ≤B R.
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Our starting point

Louveau and Rosendal proved

Theorem (Louveau-Rosendal, 2005)

1 The embeddability relation v is complete for analytic quasi-orders,
i.e., R ≤B v for every analytic quasi-order R.

2 Also the homomorphism relation 4 is complete for analytic
quasi-orders.

In particular, countable graphs cannot be classified up to ≈.

Part 1 was later extended to

Theorem (S. Friedman-M., 2011)
The embeddability relation v is in fact invariantly universal, i.e. for every
analytic qo R there is an Lω1ω-elementary class C ⊆ G s.t. R ∼B v� C.
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Some natural questions

Problem 1
Let C be some natural/interesting class of countable graphs. How complex
is 4� C? Can we classify elements of C up to ≈?

Obstacles: The graphs in the Louveau-Rosendal construction are very
special: for example, they contain arbitrary large cliques (and this is
essential in the argument!).

Problem 2
Is 4 invariantly universal? What about its restrictions 4� C to classes
C ⊆ G as in Problem 1?

Obstacles: The only known technique to prove invariant universality of 4
needs a very “rigid” Borel reduction from v to 4, which is not what is
proved in the Louveau-Rosendal theorem; we need a different proof.
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Example 1: controlling chromatic number, (odd) girth, etc...

Girth: γ(G) = length of the shortest cycle in G if there is any, and
otherwise γ(G) =∞

Odd girth: γo(G) = length of the shortest cycle with odd length if there
is any, and γo(G) =∞ otherwise

Chromatic number: χ(G) = smallest n ≤ ℵ0 for which there is c : G→ n
such that c(v) 6= c(w) whenever v G w
(such a c is called coloring of G).

If G 4 H then χ(G) ≤ χ(H) and γo(G) ≥ γo(H). Thus if χ(G) < χ(H)
and γo(G) < γo(H), then G and H are 4-incomparable.

Recall also that a graph G is bipartite iff χ(G) = 2 iff γo(G) =∞.

L. Motto Ros (Turin, Italy) Complexity of graph homomorphism Warsaw, 24.8.2023 6 / 20



Example 1: controlling chromatic number, (odd) girth, etc...

Fix 1 ≤ n ≤ ℵ0 and m, k ∈ N ∪ {∞}: we want to deal with the class
Gn,m,k of graphs G with χ(G) = n, γ(G) = m, and γo(G) = k.

Theorem (Erdős)
For every 3 ≤ n ≤ ℵ0 there are G ∈ G with χ(G) = n and arbitrarily high
girth.

Thus, apart from two trivial limitations (n = 2 iff k =∞; m ≤ k) the class
Gn,m,k is nonempty: when this happens, we call the triple (n,m, k)
acceptable.

Questions
How many graphs are there in such classes? How complicated is their
homomorphism structure 4� Gn,m,k? Can we classify elements of Gn,m,k up
to ≈?
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Example 1: controlling chromatic number, (odd) girth, etc...

A classical construction from category theory due to Pultr-Trnková provides
a categorical embedding (= injective fully faithful functor) which can be
interpreted as a Borel reduction from homomorphism on ModL to
4� Gn,m,k, under certain nontrivial constraints on L and (n,m, k).

Proposition (Louveau-Rosendal + Pultr-Trnková)
Assume that either n > 3 is finite and m = k = 3, or n = 3 and m = k > 3
are arbitrary (but finite). Then 4� Gn,m,k is invariantly universal.

Proof. Enlarge Lg to L by adding two binary relational symbols P and Q, and
turn each graph G ∈ G into an L-structure G′ ∈ ModL by interpreting P as the
“non-edge” relation and Q as 6=. The map G 7→ G′ is a Borel reduction from v
to the homomorphism relation on ModL, which is also a categorical embedding.
Compose it with the Pultr-Trnková embedding to get F : G→ Gn,m,k: then F
simultaneously witnesses v ≤B 4� Gn,m,k and ∼= ≤B ∼=� Gn,m,k and satisfies
Aut(G) ∼= Aut(F (G)) for every G ∈ G — it is known that these conditions
suffice to ensure invariant universality.

L. Motto Ros (Turin, Italy) Complexity of graph homomorphism Warsaw, 24.8.2023 8 / 20



Example 1: controlling chromatic number, (odd) girth, etc...

For technical reasons, the Pultr-Trnková functor, which is based on the
so-called “replacement operation” cannot be used to deal with the other
acceptable triples (n,m, k).

With a completely different technique (connected sums) we provided
more flexible categorical embeddings and get for example:

Theorem 1 (M.-Scamperti)
Let (n,m, k) be any acceptable triple. Then

either Gn,m,k is a single ≈-class (if n = 2 or n = m = k = 3),
or else 4� Gn,m,k is invariantly universal (and hence complete for
analytic quasi-orders).

Let’s see how the new functor is constructed,
and how the proof of Theorem 1 is completed.
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The functor: step 1

Colored graph (G, c): a graph G with a singled-out coloring c of G

From L-structures...

L = {P ,Q}
ar(P ) = 2, ar(Q) = 3

M = (M,PM, QM) with

M = {a, b, c, d}
PM = {(a, c), (d, b)}
QM = {(a, d, b)}

to colored graphs

M
a b c d
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The functor: step 2

H = {Hi | i ∈ ω} family of connected uniformly non-bipartite pairwise
4-incomparable rigid graphs of size ≤ ℵ0, and ρ ∈ N large enough.

From colored graphs (G, c)...

0

1

0 2

to the connected sum
⊕G,H

ρ,c Gv

H0

H1

H0 H2

ρ

ρ
ρ

Gv ∼= Hc(v) for every v ∈ G
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Proof of Theorem 1

Key fact
If ρ is large enough, then for every j ∈ ω and every homomorphism
h : Hj →

⊕G,H
ρ,c Gv there is a unique v̄ ∈ G such that h(Hj) = Gv̄, and

moreover c(v̄) = j and h is the canonical isomorphism between Hj and Gv̄.

[We can e.g. require ρ ≥ min{nHi − 2, diam(Hi)} for all i ∈ ω.]

Once we have this, the proof boils down to finding a family H ensuring
that

⊕G,H
ρ,c Gv has the desired features. In the present case:

Lemma

Let G =
⊕G,H

ρ,c Gv with ρ large enough, and let I = rng c. Then

χ(G) = sup
i∈I

χ(Hi) γ(G) = min
i∈I

γ(Hi) γo(G) = min
i∈I

γo(Hi).

So it is enough to find a suitable family H ⊆ Gn,m,k.
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Proof of Theorem 1

Theorem (M.-Scamperti)
Let (n,m, k) be acceptable with n ≥ 3 and one of n,m different from 3.
Then there is a family H as before such that

diam(H) = supi∈ω diam(Hi) < ℵ0

Hi is finite if so is n, and |Hi| = ℵ0 otherwise
Hi ∈ Gn,m,k.

Together with the tricks mentioned before,
this concludes the proof of Theorem 1.

Remark
The chromatic number can be replaced by the circular chromatic
number χc, the fractional chromatic number χf , and so on.
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Example 2: Forbidden graphs

In graph theory (and its applications), a prominent role is played by classes
of graphs omitting certain configurations. More precisely, given a collection
of connected graphs F we look at

ForbF = {G ∈ G | F 64 G for all F ∈ F}.

The class ForbF is 4-downward closed: thus it is closed under products ×,
and obviously it is also closed under sums ⊕, i.e. it is an ideal class.

One of the best known results concerning the structure of ForbF was:

Theorem (Nešetřil-Rödl)
Every ForbF , if not trivial, contains an infinite set of 4-incomparable
graphs.
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Example 2: Forbidden graphs

Notice that if the one-point graph K1 belongs to F , then ForbF = ∅.

Theorem 2 (M.-Scamperti)
Let F be a collection of connected graphs not containing K1. Then exactly
one of the following alternatives holds:

1 ForbF consists of the discrete graph.

2 ForbF consists of all bipartite graphs.

3 The homomorphism relation on ForbF is invarianly universal.

Proof (sketch). We can assume that F is 4-upward closed. If F contains a
bipartite graph we are in case 1 , while if F contains all odd circular graphs Cj
we are in case 2 . In all remaining cases, there is an odd j ≥ 3 such that
Cj ∈ ForbF . Then we can construct a family H such that
γ(Hi) = γo(Hi) = j + 2 and Hi 4 Cj for all j ∈ ω, so that each connected sum
G =

⊕G,H
ρ,c Gv given by our functor satisfies G 4 Cj when ρ is even. Then

G ∈ ForbF and we are in case 3 .
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An empirical remark

In all applications, our method reveals a sort of general dichotomy, which
can be stated in two forms depending on whether we consider “invariant
universality” (which requires rigidity of the graphs in H), or just
“completeness” (which can be obtained even without rigidity).

Suppose that C is closed under (sufficiently large) connected sums and
restrictions to connected components. Assume further that, up to
homomorphic equivalence, all graphs in C are (uniformly) non-bipartite.

1 Either 4� C is almost linear (= all 4-antichains have size ≤ 2), or else
4� C is complete for analytic quasi-orders.

2 If there are three rigid 4-incomparable graphs in C, then 4� C is even
invariantly universal.
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Planar graphs (work in progress)

A graph is planar if it can be embedded in the plane, i.e., it can be drawn
on the plane in such a way that no edges cross each other. For example,
K4 is planar while K5 is not.

In general, planar graphs are considered simpler than general graphs,
especially when their vertices all have low degree. Surprisingly, Hubička and
Nešetřil proved that this is not quite true.

Theorem (Hubička-Nešetřil, 2005)
Any countable partial order can be embedded into the homomorphism
structure of finite cubic (= degree at most 3) planar graphs.

Moving to our framework, one can then ask how much complex is the
homomorphism relation 4 on countable cubic planar graphs, and how
difficult is to classify them up to ≈.
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Planar graphs (work in progress)

A relation R on a Polish space X is σ-compact if it can be written as a
countable union of compact subsets of X2. For example, the
homomorphism relation on the Polish space of cubic graphs is σ-compact.

Theorem (M.)
The homomorphism relation on (countable) cubic planar graphs is
complete for σ-compact quasi-orders.

The proof builds on another result of Louveau-Rosendal and uses one of
the several variations of the previous method. We also get a form of
invariant universality:

Corollary (M.)
For every σ-compact quasi-order R there is an Lω1ω-elementary class
C ⊆ G consisting of cubic planar graphs such that R ∼B 4� C.
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Planar graphs (work in progress)

This solves our first problem, as we precisely computed the Borel
complexity of 4 on the given class.

As for the associated classification problem, since the equivalence relation
E1 is σ-compact one has E1 ≤B ≈, and thus we easily get the following
strong anti-classification result:

Corollary (M.)
Cubic planar graphs cannot be classified up to ≈ using as complete
invariants countable structures (up to isomorphism) or, more generally,
orbits of a continuous Polish group action.

The same applies to planar graphs whose vertices have degree at most d,
for any finite d ≥ 3.

What if we remove the restriction on the
degrees of the vertices?
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Planar graphs (work in progress)

Theorem (M.)
The relation 4 on planar graphs (with no bound on the degree of their vertices)
is complete for analytic quasi-orders.

Still checking if it is also invariantly universal, but I guess it is...

A project
Study more classes of graphs naturally appearing in combinatorics.
(Suggestions?)
Better understand “uniform” properties of graphs, e.g. uniform
non-bipartiteness.
Is it “functorial” Borel reducibility useful elsewhere?

Thank you for your attention!
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